The modular design of the Infinity Digital Lane System permits utilization of the very best components for each of the individual sub-systems, all of which are then integrated into one complete operating unit for use in either single lanes or Open Road Tolling zones.

Infinity System
- Modular
- Blade based
- Expandable
- Upgradable
- Reliable

Infinity Components
- Common
- Interchangeable
- Hot-swappable
- Redundant

Infinity Digital Lane System is blade based and comprised of independent, single function modules that can be easily replaced, upgraded, or removed in the field without affecting other modules. The field-exchanged blades can then be diagnosed and repaired in the lab.

Modularity
The Infinity Digital Lane System architecture allows modules and functionality to be easily added or changed. With the modular approach, it is easy to add more tolling lanes by simply adding more modules. The Infinity Digital Lane System has virtually no limit to the number of open road lanes of traffic that it can support.

Interchangeability
Each blade is self-contained and has its own power supply, central processing unit (CPU), data storage device, diagnostic indicators, and maintenance ports (on the front panel for easy access).

Parts are common and interchangeable. There are two primary types of blades, one type that is used for lane servers, VCARS® controllers, and AVI controllers and a second type that is used for IVIS™ controllers, vehicle profilers, and ORT zone controllers. These two blade types are used in single lanes as well as Open Road Tolling systems. By having only two common blade types for the entire system, maintenance and inventory tasks become more efficient and easier to manage. Because the architecture of the Infinity Lane System is IP-based, the physical location of the blade does not have to change in order for the blade to be interchangeable.

Upgradability
Individual Infinity blades can be easily upgraded at the end of their functional lives. This is a major innovation for the tolling industry. A typical toll system has a useful life of only five to seven years, at which time an RFP is typically issued to replace the entire system, even though the supporting infrastructure (such as wiring, network cabling, electrical cabinets, and passive components) remain viable. This is a costly and time-consuming process.
With the *Infinity*® system, only the end-of-life modules or the ones to be upgraded need to be replaced. The remainder of the system continues in service. Total system life is extended indefinitely and procurements can be limited to specific subsystems and modules.

Maintainability

Maintaining *Infinity*® Digital Lane Systems is a simple task thanks to its innovative design. The *Infinity*® modular blades slide into a rack. The rack is designed with a tilt out feature that allows total access to all internal elements of the blades for ease of maintenance without having to remove the blades individually.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade based design</td>
<td>Blades are easily installed, changed, or removed, significantly reducing maintenance and repair times. Rather than troubleshooting an issue in the field, the maintenance technician simply swaps out the entire blade and returns the lane to service, usually in less than five minutes.</td>
</tr>
<tr>
<td>Standardized architecture</td>
<td>Blades are interchangeable and can be configured to add or change functionality, as needed. The same system blades are used in both single lane and multi-lane Open Road Tolling (ORT) configurations.</td>
</tr>
<tr>
<td>Common parts base</td>
<td>Blades are standardized and use many common, readily available parts, making inventory management less expensive, and more efficient.</td>
</tr>
<tr>
<td>Fully upgradable</td>
<td>Upgradeability eliminates obsolescence and the need for costly re-procurements. Blades can be easily added or upgraded as new technology emerges.</td>
</tr>
<tr>
<td>Standard IP-based communication</td>
<td>Modules can be easily added or changed, as additional functionality is needed. Modules communicate with each other through TCP/IP, not hard-wired through outdated serial type connections.</td>
</tr>
<tr>
<td>Each blade is self-contained</td>
<td>Each blade has its own power supply, central processing unit (CPU), data storage, and front panel diagnostics and maintenance ports.</td>
</tr>
<tr>
<td>Infinity® unit tilt-out & slotted blade design</td>
<td>Individual Infinity® rack units can be tipped-out for ease of maintenance. Blades can be easily removed in a matter of seconds simply by loosening the thumbscrews and sliding out the blade.</td>
</tr>
<tr>
<td>Easily maintainable</td>
<td>Standardized module-to-module interfaces reduce training requirements for hardware maintenance technicians.</td>
</tr>
<tr>
<td>Highly robust</td>
<td>Critical systems are redundant to maximize system availability and uptime. Most components are of industrial design for optimal performance in adverse environments.</td>
</tr>
</tbody>
</table>

For more information:

Call **1.800.923.4824** or **214.461.4031**

© 2010 TC License, Ltd. All rights reserved. TRANSCORE is a registered trademark and is used under license. VCARS is a registered trademark and *INFINITY*® and IVIS are trademarks of United Toll Systems, Inc., and are used under license. UTS IVIS is covered under numerous United States and foreign patents. Other patents are pending. All other trademarks listed are the property of their respective owners. Contents subject to change.